fastxtend’s XResNet
is backwards compatible with fastai.vision.models.xresnet.XResNet
.
It adds the following features to XResNet
:
- Compatibility with TorchScript
- Support for Stochastic Depth
- Set SE activation independently from model activation
- Support for ECA, SA, and TA attention modules
- Allows passing a
custom_head
on creation
- Allows setting
stem_pool
, block_pool
, and head_pool
pooling layers on creation
ResNet Blocks
source
ResBlock
ResBlock (expansion, ni, nf, stride=1, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sa=False, sym=False,
norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True, stoch_depth=0,
padding=None, bias=None, bn_1st=True, transpose=False,
init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1, padding_mode:str='zeros',
device=None, dtype=None)
Resnet block from ni
to nh
with stride
source
ResNeXtBlock
ResNeXtBlock (expansion, ni, nf, groups=32, stride=1, base_width=4,
attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sa=False, sym=False, norm_type=<NormType.Batch: 1>,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
32 |
|
stride |
int |
1 |
|
base_width |
int |
4 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
Squeeze & Excitation Blocks
source
SEBlock
SEBlock (expansion, ni, nf, groups=1, se_reduction=16, stride=1,
se_act_cls=<class 'torch.nn.modules.activation.ReLU'>,
attn_mod=None, nh1=None, nh2=None, dw=False, g2=1, sa=False,
sym=False, norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True, stoch_depth=0,
padding=None, bias=None, bn_1st=True, transpose=False,
init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1, padding_mode:str='zeros',
device=None, dtype=None)
A Squeeze and Excitation XResNet
Block. Can set se_act_cls
seperately.
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
1 |
|
se_reduction |
int |
16 |
|
stride |
int |
1 |
|
se_act_cls |
type |
ReLU |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
SEResNeXtBlock
SEResNeXtBlock (expansion, ni, nf, groups=32, se_reduction=16, stride=1,
base_width=4, se_act_cls=<class
'torch.nn.modules.activation.ReLU'>, attn_mod=None,
nh1=None, nh2=None, dw=False, g2=1, sa=False, sym=False,
norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
A Squeeze and Excitation XResNeXtBlock
. Can set se_act_cls
seperately.
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
32 |
|
se_reduction |
int |
16 |
|
stride |
int |
1 |
|
base_width |
int |
4 |
|
se_act_cls |
type |
ReLU |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
Efficient Channel Attention Blocks
source
ECABlock
ECABlock (expansion, ni, nf, groups=1, eca_ks=None, stride=1,
attn_mod=None, nh1=None, nh2=None, dw=False, g2=1, sa=False,
sym=False, norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True, stoch_depth=0,
padding=None, bias=None, bn_1st=True, transpose=False,
init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1, padding_mode:str='zeros',
device=None, dtype=None)
An Efficient Channel Attention XResNet
Block
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
1 |
|
eca_ks |
NoneType |
None |
|
stride |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
ECAResNeXtBlock
ECAResNeXtBlock (expansion, ni, nf, groups=32, eca_ks=None, stride=1,
base_width=4, attn_mod=None, nh1=None, nh2=None,
dw=False, g2=1, sa=False, sym=False,
norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
An Efficient Channel Attention XResNeXtBlock
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
32 |
|
eca_ks |
NoneType |
None |
|
stride |
int |
1 |
|
base_width |
int |
4 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
Shuffle Attention Blocks
source
SABlock
SABlock (expansion, ni, nf, groups=1, sa_grps=64, stride=1,
attn_mod=None, nh1=None, nh2=None, dw=False, g2=1, sa=False,
sym=False, norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True, stoch_depth=0,
padding=None, bias=None, bn_1st=True, transpose=False,
init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1, padding_mode:str='zeros',
device=None, dtype=None)
A Shuffle Attention XResNet
Block
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
1 |
|
sa_grps |
int |
64 |
|
stride |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
SAResNeXtBlock
SAResNeXtBlock (expansion, ni, nf, groups=32, sa_grps=64, stride=1,
base_width=4, attn_mod=None, nh1=None, nh2=None,
dw=False, g2=1, sa=False, sym=False,
norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
A Shuffle Attention XResNeXtBlock
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
32 |
|
sa_grps |
int |
64 |
|
stride |
int |
1 |
|
base_width |
int |
4 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
Triplet Attention Blocks
source
TABlock
TABlock (expansion, ni, nf, groups=1, ta_ks=7, stride=1, attn_mod=None,
nh1=None, nh2=None, dw=False, g2=1, sa=False, sym=False,
norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True, stoch_depth=0,
padding=None, bias=None, bn_1st=True, transpose=False,
init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1, padding_mode:str='zeros',
device=None, dtype=None)
A Triplet Attention XResNet
Block
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
1 |
|
ta_ks |
int |
7 |
|
stride |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
TAResNeXtBlock
TAResNeXtBlock (expansion, ni, nf, groups=32, ta_ks=7, stride=1,
base_width=4, attn_mod=None, nh1=None, nh2=None,
dw=False, g2=1, sa=False, sym=False,
norm_type=<NormType.Batch: 1>, act_cls=<class
'torch.nn.modules.activation.ReLU'>, ndim=2, ks=3,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
A Triplet Attention XResNeXtBlock
expansion |
|
|
|
ni |
|
|
|
nf |
|
|
|
groups |
int |
32 |
|
ta_ks |
int |
7 |
|
stride |
int |
1 |
|
base_width |
int |
4 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sa |
bool |
False |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
XResNet
XResNet (block, expansion, layers, p=0.0, c_in=3, n_out=1000,
stem_szs=(32, 32, 64), block_szs=[64, 128, 256, 512], widen=1.0,
sa=False, act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None, nh2=None,
dw=False, g2=1, sym=False, norm_type=<NormType.Batch: 1>,
block_pool=<function AvgPool>, pool_first=True, stoch_depth=0,
padding=None, bias=None, bn_1st=True, transpose=False,
init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1, padding_mode:str='zeros',
device=None, dtype=None)
A flexible version of fastai’s XResNet
Fastxtend’s XResNet
allows a custom_head
, setting stem_pool
, block_pool
, and head_pool
pooling layers on creation, per ResBlock
stochastic depth stoch_depth
, and support for more attention modules.
XResNet Models
Predefined XResNet models
source
xresnet101
xresnet101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class 'fastai.layers.ConvLayer'>,
stem_pool=<function MaxPool>, head_pool=<function
AdaptiveAvgPool>, custom_head=None, pretrained=False,
groups=1, attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xresnet50
xresnet50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class 'fastai.layers.ConvLayer'>,
stem_pool=<function MaxPool>, head_pool=<function
AdaptiveAvgPool>, custom_head=None, pretrained=False,
groups=1, attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xresnet34
xresnet34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class 'fastai.layers.ConvLayer'>,
stem_pool=<function MaxPool>, head_pool=<function
AdaptiveAvgPool>, custom_head=None, pretrained=False,
groups=1, attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xresnet18
xresnet18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class 'fastai.layers.ConvLayer'>,
stem_pool=<function MaxPool>, head_pool=<function
AdaptiveAvgPool>, custom_head=None, pretrained=False,
groups=1, attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XResNeXt Models
Predefined XResNeXt models
source
xresnext101
xresnext101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xresnext50
xresnext50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class 'fastai.layers.ConvLayer'>,
stem_pool=<function MaxPool>, head_pool=<function
AdaptiveAvgPool>, custom_head=None, pretrained=False,
groups=1, attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xresnext34
xresnext34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class 'fastai.layers.ConvLayer'>,
stem_pool=<function MaxPool>, head_pool=<function
AdaptiveAvgPool>, custom_head=None, pretrained=False,
groups=1, attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xresnext18
xresnext18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class 'fastai.layers.ConvLayer'>,
stem_pool=<function MaxPool>, head_pool=<function
AdaptiveAvgPool>, custom_head=None, pretrained=False,
groups=1, attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XSE-ResNet Models
Predefined Squeeze and Excitation XResNet models
source
xse_resnet101
xse_resnet101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xse_resnet50
xse_resnet50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xse_resnet34
xse_resnet34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xse_resnet18
xse_resnet18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XSE-ResNeXt Models
Predefined Squeeze and Excitation XResNeXt models
source
xse_resnext101
xse_resnext101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xse_resnext50
xse_resnext50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xse_resnext34
xse_resnext34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xse_resnext18
xse_resnext18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XECA-ResNet Models
Predefined Efficient Channel Attention XResNet models
source
xeca_resnet101
xeca_resnet101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xeca_resnet50
xeca_resnet50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xeca_resnet34
xeca_resnet34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xeca_resnet18
xeca_resnet18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XECA-ResNeXt Models
Predefined Efficient Channel Attention XResNeXt models
source
xeca_resnext101
xeca_resnext101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function
MaxPool>, head_pool=<function AdaptiveAvgPool>,
custom_head=None, pretrained=False, groups=1,
attn_mod=None, nh1=None, nh2=None, dw=False, g2=1,
sym=False, norm_type=<NormType.Batch: 1>,
block_pool=<function AvgPool>, pool_first=True,
stoch_depth=0, padding=None, bias=None, bn_1st=True,
transpose=False, init='auto', xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xeca_resnext50
xeca_resnext50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xeca_resnext34
xeca_resnext34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xeca_resnext18
xeca_resnext18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XSA-ResNet Models
Predefined Shuffle Attention XResNet models
source
xsa_resnet101
xsa_resnet101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xsa_resnet50
xsa_resnet50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xsa_resnet34
xsa_resnet34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xsa_resnet18
xsa_resnet18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XSA-ResNeXt Models
Predefined Shuffle Attention XResNeXt models
source
xsa_resnext101
xsa_resnext101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xsa_resnext50
xsa_resnext50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xsa_resnext34
xsa_resnext34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xsa_resnext18
xsa_resnext18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XTA-ResNet Models
Predefined Triplet Attention XResNet models
source
xta_resnet101
xta_resnet101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xta_resnet50
xta_resnet50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xta_resnet34
xta_resnet34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xta_resnet18
xta_resnet18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>, ndim=2,
ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
XTA-ResNeXt Models
Predefined Triplet Attention XResNeXt models
source
xta_resnext101
xta_resnext101 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xta_resnext50
xta_resnext50 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xta_resnext34
xta_resnext34 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|
source
xta_resnext18
xta_resnext18 (n_out=1000, p=0.0, c_in=3, stem_szs=(32, 32, 64),
block_szs=[64, 128, 256, 512], widen=1.0, sa=False,
act_cls=<class 'torch.nn.modules.activation.ReLU'>,
ndim=2, ks=3, stride=2, stem_layer=<class
'fastai.layers.ConvLayer'>, stem_pool=<function MaxPool>,
head_pool=<function AdaptiveAvgPool>, custom_head=None,
pretrained=False, groups=1, attn_mod=None, nh1=None,
nh2=None, dw=False, g2=1, sym=False,
norm_type=<NormType.Batch: 1>, block_pool=<function
AvgPool>, pool_first=True, stoch_depth=0, padding=None,
bias=None, bn_1st=True, transpose=False, init='auto',
xtra=None, bias_std=0.01,
dilation:Union[int,Tuple[int,int]]=1,
padding_mode:str='zeros', device=None, dtype=None)
n_out |
int |
1000 |
|
p |
float |
0.0 |
|
c_in |
int |
3 |
|
stem_szs |
tuple |
(32, 32, 64) |
|
block_szs |
list |
[64, 128, 256, 512] |
|
widen |
float |
1.0 |
|
sa |
bool |
False |
|
act_cls |
type |
ReLU |
|
ndim |
int |
2 |
|
ks |
int |
3 |
|
stride |
int |
2 |
|
stem_layer |
type |
ConvLayer |
|
stem_pool |
function |
MaxPool |
|
head_pool |
function |
AdaptiveAvgPool |
|
custom_head |
NoneType |
None |
|
pretrained |
bool |
False |
|
groups |
int |
1 |
|
attn_mod |
NoneType |
None |
|
nh1 |
NoneType |
None |
|
nh2 |
NoneType |
None |
|
dw |
bool |
False |
|
g2 |
int |
1 |
|
sym |
bool |
False |
|
norm_type |
NormType |
NormType.Batch |
|
block_pool |
function |
AvgPool |
|
pool_first |
bool |
True |
|
stoch_depth |
int |
0 |
|
padding |
NoneType |
None |
|
bias |
NoneType |
None |
|
bn_1st |
bool |
True |
|
transpose |
bool |
False |
|
init |
str |
auto |
|
xtra |
NoneType |
None |
|
bias_std |
float |
0.01 |
|
dilation |
typing.Union[int, typing.Tuple[int, int]] |
1 |
|
padding_mode |
str |
zeros |
TODO: refine this type |
device |
NoneType |
None |
|
dtype |
NoneType |
None |
|