Tracking Callbacks
    Additional callbacks which make decisions depending how a monitored metric/loss behaves.
  
TerminateOnTrainNaN
TerminateOnTrainNaN (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
A Callback that terminates training if the training loss is NaN and ignores valid loss.
SaveModelAtEnd
SaveModelAtEnd (fname='model', with_opt=False)
A SaveModelCallback which only saves the model at the end so loggers can find it.
| Type | Default | Details | |
|---|---|---|---|
| fname | str | model | Model filename | 
| with_opt | bool | False | Include optimizer state | 
LastMetricCallback
LastMetricCallback (metrics:Listified[str]|None=None)
A Callback which stores the last metric(s) value by name (or all if None) in the Learner.lastmetric dictionary