Audio Learner
Learner which stacks tuples of
TensorSpec
or TensorMelSpec
StackSpecCallback
StackSpecCallback (after_create=None, before_fit=None, before_epoch=None, before_train=None, before_batch=None, after_pred=None, after_loss=None, before_backward=None, after_cancel_backward=None, after_backward=None, before_step=None, after_cancel_step=None, after_step=None, after_cancel_batch=None, after_batch=None, after_cancel_train=None, after_train=None, before_validate=None, after_cancel_validate=None, after_validate=None, after_cancel_epoch=None, after_epoch=None, after_cancel_fit=None, after_fit=None)
Stacks tuples of TensorSpec or TensorMelSpec. ToDo: add resizing
audio_learner
audio_learner (dls:fastai.data.core.DataLoaders, model:torch.nn.modules.module.Module, loss_func:Union[torc h.nn.modules.module.Module,Callable[...,torch.Tensor],None Type]=None, opt_func:Union[fastai.optimizer.Optimizer,fast ai.optimizer.OptimWrapper]=<function Adam>, lr:Union[float,slice]=0.001, splitter:Callable[[torch.nn.m odules.module.Module],list[torch.Tensor]]=<function trainable_params>, cbs:Union[fastai.callback.core.Callback ,Iterable[fastai.callback.core.Callback],MutableSequence[f astai.callback.core.Callback],fastcore.foundation.L,fastco re.basics.fastuple,NoneType]=None, metrics:Union[fastai.le arner.Metric,Iterable[fastai.learner.Metric],MutableSequen ce[fastai.learner.Metric],fastcore.foundation.L,fastcore.b asics.fastuple,NoneType]=None, path:Union[str,pathlib.Path,NoneType]=None, model_dir:Union[str,pathlib.Path]='models', wd:Optional[float]=None, wd_bn_bias:bool=False, train_bn:bool=True, moms:tuple[float,float,float]=(0.95, 0.85, 0.95), default_cbs:bool=True)
An Audio specific Learner that stacks tuples of TensorSpec
or TensorMelSpec
Type | Default | Details | |
---|---|---|---|
dls | DataLoaders | DataLoaders containing fastai or PyTorch DataLoader s |
|
model | nn.Module | PyTorch model for training or inference | |
loss_func | nn.Module | Callable[…, Tensor] | None | None | Loss function. Defaults to dls loss |
opt_func | Optimizer | OptimWrapper | Adam | Optimization function for training |
lr | float | slice | 0.001 | Default learning rate |
splitter | Callable[[nn.Module], list[Tensor]] | trainable_params | Split model into parameter groups. Defaults to one parameter group |
cbs | Listified[Callback] | None | None | Callback s to add to Learner |
metrics | Listified[Metric] | None | None | Metric s to calculate on validation set |
path | str | Path | None | None | Parent directory to save, load, and export models. Defaults to dls path |
model_dir | str | Path | models | Subdirectory to save and load models |
wd | float | None | None | Default weight decay |
wd_bn_bias | bool | False | Apply weight decay to normalization and bias parameters |
train_bn | bool | True | Train frozen normalization layers |
moms | tuple[float, float, float] | (0.95, 0.85, 0.95) | Default momentum for schedulers |
default_cbs | bool | True | Include default Callback s |
Returns | Learner |