Audio Data Augmentation

Transforms to apply data augmentation in audio tasks. Inspired by FastAudio and torch-audiomentations.

TensorAudio Item Transforms

Item transforms which run on the CPU.


source

Flip

 Flip (p:float=0.5)

Randomly flip TensorAudio with probability p

with less_random():
    _,axs = plt.subplots(1,2,figsize=(8,4))
    f = Flip()
    for ax in axs: f(audio, split_idx=0).show(ctx=ax, hear=False)


source

Roll

 Roll (p:float=0.5, max_roll:float=0.5)

Randomly shift TensorAudio with rollover

Type Default Details
p float 0.5 Per-item probability
max_roll float 0.5 Maximum shift
with less_random():
    _,axs = plt.subplots(1,3,figsize=(12,4))
    f = Roll(p=1,max_roll=0.5)
    for ax in axs: f(audio, split_idx=0).show(ctx=ax, hear=False)


source

AudioPadMode

 AudioPadMode (value, names=None, module=None, qualname=None, type=None,
               start=1)

An enumeration.


source

RandomCropPad

 RandomCropPad (duration:Numeric|None=None, samples:int|None=None,
                padmode:AudioPadMode=<AudioPadMode.Repeat: 4>,
                constant:Numeric=0)

Randomly resize TensorAudio to specified length. Center crop during valid.

Type Default Details
duration Numeric | None None Crop length in seconds
samples int | None None Crop length in samples
padmode AudioPadMode AudioPadMode.Repeat How to pad if necessary
constant Numeric 0 Value for AudioPadMode.Constant

RandomCropPad will pad using one of the following five modes if the input length is less than duration or samples.

with less_random():
    _,axs = plt.subplots(1,4,figsize=(18,4))
    for ax,padmode in zip(axs.flatten(), [AudioPadMode.Constant, AudioPadMode.ConstantPre,
                                          AudioPadMode.ConstantPost, AudioPadMode.Repeat]
    ):
        rcp = RandomCropPad(4, padmode=padmode)
        rcp(audio, split_idx=1).show(ctx=ax, title=padmode, hear=False)
        plt.tight_layout()

During training, RandomCropPad will randomly crop if the input length is greater than duration or samples.

with less_random():
    _,axs = plt.subplots(1,3,figsize=(12,4))
    rcp = RandomCropPad(1.2)
    for ax in axs: rcp(audio, split_idx=0).show(ctx=ax, hear=False)

During validation or prediction, RandomCropPad will center crop if the input length is greater than duration or samples.

with less_random():
    _,axs = plt.subplots(1,3,figsize=(12,4))
    rcp = RandomCropPad(1.2)
    for ax in axs: rcp(audio, split_idx=1).show(ctx=ax, hear=False)


source

VolumeMode

 VolumeMode (value, names=None, module=None, qualname=None, type=None,
             start=1)

An enumeration.


source

Volume

 Volume (p:float=0.75, gain:Numeric|None=None,
         gain_range:tuple[Numeric,Numeric]=(-18, 6),
         volmode:VolumeMode=<VolumeMode.DB: 1>)

Randomly change TensorAudio’s volume

Type Default Details
p float 0.75 Per-item probability
gain Numeric | None None Gain is a positive amplitude ratio, a power (voltage squared), or in decibels. If none, randomly select from gain_range.
gain_range tuple[Numeric, Numeric] (-18, 6) Random range for gain
volmode VolumeMode VolumeMode.DB One of VolumeMode.DB, VolumeMode.Amplitude, or VolumeMode.Power
_,axs = plt.subplots(1,4,figsize=(18,4))
for ax,gain in zip(axs.flatten(), [-18, -6, 0, 6]):
    vol = Volume(p=1., gain=gain)
    vol(audio, split_idx=0).show(ctx=ax, title=f'{gain} DB', hear=False)


source

PeakNorm

 PeakNorm (p:float=0.1)

Randomly apply constant gain so TensorAudio’s loudest level is between -1 and 1 with probability p

_,axs = plt.subplots(1,1,figsize=(4,4))
PeakNorm(p=1.)(audio, split_idx=0).show(ctx=axs, hear=False)
<AxesSubplot:>


source

VolumeOrPeakNorm

 VolumeOrPeakNorm (p:float=0.75, peak_p:float=0.1, gain:Numeric|None=None,
                   gain_range:tuple[Numeric,Numeric]=(-18, 6),
                   volmode:VolumeMode=<VolumeMode.DB: 1>)

Randomly apply Volume or Peak to TensorAudio in one transform

Type Default Details
p float 0.75 Per-item probability
peak_p float 0.1 Probability of applying Peak
gain Numeric | None None Gain is a positive amplitude ratio, a power (voltage squared), or in decibels. If none, randomly select from gain_range.
gain_range tuple[Numeric, Numeric] (-18, 6) Random range for gain
volmode VolumeMode VolumeMode.DB One of VolumeMode.DB, VolumeMode.Amplitude, or VolumeMode.Power

source

Noise

 Noise (p=0.25, noise_level:float|None=None,
        noise_range:tuple[float,float]=(0.01, 0.1),
        color:NoiseColor|None=None)

Adds noise of specified color and level to TensorAudio relative to mean audio level

Type Default Details
p float 0.25 Per-item probability
noise_level float | None None Loudness of noise, if None randomly selects from noise_range
noise_range tuple[float, float] (0.01, 0.1) Range of noise loudness values
color NoiseColor | None None Color of noise to add, if None randomly selects from NoiseColor
with less_random():
    cn = NoiseColor.White
    _,axs = plt.subplots(1,4,figsize=(22,4))
    plt.suptitle(f'{cn}')
    for ax,nl in zip(axs.flatten(), [0.02, 0.05, 0.1, 0.2]):
        ps = Noise(p=1., noise_level=nl, color=cn)
        audio = TensorAudio.create(TEST_AUDIO)
        ps(audio, split_idx=0).show(ctx=ax, title=f'noise_level: {nl}', hear=False)

TensorAudio Batch Transforms

Batch transforms which run on the GPU.


source

VolumeBatch

 VolumeBatch (p:float=0.5, gain:Numeric|None=None,
              gain_range:tuple[Numeric,Numeric]=(-18, 6),
              volmode:VolumeMode=<VolumeMode.DB: 1>)

Randomly change TensorAudio’s volume on the GPU

Type Default Details
p float 0.5 Per-item probability
gain Numeric | None None Gain is a positive amplitude ratio, a power (voltage squared), or in decibels. If none, randomly select from gain_range.
gain_range tuple[Numeric, Numeric] (-18, 6) Random range for gain
volmode VolumeMode VolumeMode.DB One of VolumeMode.DB, VolumeMode.Amplitude, or VolumeMode.Power

source

PitchShift

 PitchShift (p:float=0.2, semitones:tuple[float,float]=(-4.0, 4.0),
             bins_per_octave:int=12,
             padmode:AudioPadMode=<AudioPadMode.Repeat: 4>,
             constant:Numeric=0, split:int|None=None)

Fast shift of TensorAudio’s pitch.

Type Default Details
p float 0.2 Per-item probability
semitones tuple[float, float] (-4.0, 4.0) Random pitch shift range in semitones to compute efficient shifts
bins_per_octave int 12 Number of steps per octave
padmode AudioPadMode AudioPadMode.Repeat How to pad if necessary
constant Numeric 0 Value for AudioPadMode.Constant
split int | None None Apply transform to split items at a time. Use to prevent GPU OOM.
with less_random():
    _,axs = plt.subplots(1,4,figsize=(22,4))
    ps = PitchShift(p=1.)
    for ax in axs.flatten():
        audio = TensorAudio.create(TEST_AUDIO)
        ps(audio.unsqueeze(0), split_idx=0).squeeze(0).show(ctx=ax, title=f'shift: {ps.shift}', hear=False)


source

PitchShiftTA

 PitchShiftTA (p:float=0.2, n_steps:int|None=None,
               n_step_range:tuple[int,int]=(2, 6), bins_per_octave:int=12,
               n_fft:int=512, win_length:int|None=None,
               hop_length:int|None=None,
               window_fn:Callable[...,Tensor]=<built-in method hann_window
               of type object at 0x7f95e7c335c0>, wkwargs:dict|None=None)

Shift the TensorAudio’s pitch using TorchAudio. Can be slower than PitchShift

Type Default Details
p float 0.2 Per-item probability
n_steps int | None None The (fractional) steps to shift waveform
n_step_range tuple[int, int] (2, 6) Random n_steps range if n_steps is None
bins_per_octave int 12 Number of steps per octave
n_fft int 512 Size of FFT, creates n_fft // 2 + 1 bins
win_length int | None None Window size. Defaults to n_fft
hop_length int | None None Length of hop between STFT windows. Defaults to win_length // 4
window_fn Callable[…, Tensor] hann_window Window tensor applied/multiplied to each frame/window
wkwargs dict | None None Args for window_fn
_,axs = plt.subplots(1,4,figsize=(22,4))
for ax,steps in zip(axs.flatten(), [2, 3, 5, 7]):
    ps = PitchShiftTA(p=1., n_steps=steps)
    audio = TensorAudio.create(TEST_AUDIO)
    ps(audio.unsqueeze(0), split_idx=0).squeeze(0).show(ctx=ax, title=f'n_steps: {steps}', hear=False)


source

TimeStretch

 TimeStretch (p:float=0.2, stretch_rates:tuple[float,float]=(0.5, 2.0),
              padmode:AudioPadMode=<AudioPadMode.Repeat: 4>,
              constant:Numeric=0, split:int|None=None)

Fast time stretch of TensorAudio

Type Default Details
p float 0.2 Per-item probability
stretch_rates tuple[float, float] (0.5, 2.0) Random time stretch range to compute efficient stretches. Defaults to 50%-200% speed
padmode AudioPadMode AudioPadMode.Repeat How to pad if necessary
constant Numeric 0 Value for AudioPadMode.Constant
split int | None None Apply transform to split items at a time. Use to prevent GPU OOM.
with less_random():
    _,axs = plt.subplots(1,4,figsize=(22,4))
    ts = TimeStretch(p=1.)
    for ax in axs.flatten():
        audio = TensorAudio.create(TEST_AUDIO)
        ts(audio.unsqueeze(0), split_idx=0).squeeze(0).show(ctx=ax, title=f'stretch: {ts.stretch}', hear=False)


source

PitchShiftOrTimeStretch

 PitchShiftOrTimeStretch (p:float=0.4, semitones:tuple[float,float]=(-4.0,
                          4.0), bins_per_octave:int=12,
                          stretch_rates:tuple[float,float]=(0.5, 2.0),
                          padmode:AudioPadMode=<AudioPadMode.Repeat: 4>,
                          constant:Numeric=0, split:int|None=None)

Randomly apply either PitchShift or TimeStretch to TensorAudio to minimize distortion

Type Default Details
p float 0.4 Per-item probability
semitones tuple[float, float] (-4.0, 4.0) Random pitch shift range in semitones to compute efficient shifts
bins_per_octave int 12 Number of steps per octave
stretch_rates tuple[float, float] (0.5, 2.0) Random time stretch range to compute efficient stretches. Defaults to 50%-200% speed
padmode AudioPadMode AudioPadMode.Repeat How to pad if necessary
constant Numeric 0 Value for AudioPadMode.Constant
split int | None None Apply transform to split items at a time. Use to prevent OOM.
with less_random(2998):
    _,axs = plt.subplots(1,4,figsize=(22,4))
    psts = PitchShiftOrTimeStretch(p=1.)
    for ax in axs.flatten():
        audio = TensorAudio.create(TEST_AUDIO)
        psts(audio.unsqueeze(0), split_idx=0).squeeze(0).show(ctx=ax, title='stretch' if sum(psts.stretch_idxs) else 'pitch', hear=False)

TensorMelspec Transforms

Batch transforms which run on the GPU.

# audio = TensorAudio.create(TEST_AUDIO)
mel = MelSpectrogram(audio.sr, hop_length=1024, n_fft=1024, n_mels=112)(audio)
mel.show(to_db=True)
<AxesSubplot:>


source

TimeMasking

 TimeMasking (p:float=0.25, max_mask:float=0.2, iid_masks:bool=True,
              mask_value:int|None=0)

Randomly apply masking to a TensorSpec or TensorMelSpec in the time domain

Type Default Details
p float 0.25 Per-item probability
max_mask float 0.2 Maximum possible length of the mask [0, max_mask)
iid_masks bool True Apply different masks to each example/channel in the batch
mask_value int | None 0 If None, random value between batch min and max
with less_random():
    _,axs = plt.subplots(1,3,figsize=(12,4))
    tm = TimeMasking(p=1., max_mask=0.5)
    for ax in axs:
        mel = MelSpectrogram(audio.sr, hop_length=1024, n_fft=1024, n_mels=112)(audio)
        tm(mel.unsqueeze(0), split_idx=0).squeeze(0).show(ctx=ax, to_db=True)


source

FrequencyMasking

 FrequencyMasking (p:float=0.25, max_mask:float=0.2, iid_masks:bool=True,
                   mask_value:int|None=0)

Randpmly apply masking to a TensorSpec or TensorMelSpec in the frequency domain

Type Default Details
p float 0.25 Per-item probability
max_mask float 0.2 Maximum possible length of the mask [0, max_mask)
iid_masks bool True Apply different masks to each example/channel in the batch
mask_value int | None 0 If None, random value between batch min and max
with less_random():
    _,axs = plt.subplots(1,3,figsize=(12,4))
    fm = FrequencyMasking(p=1., max_mask=0.5)
    for ax in axs:
        mel = MelSpectrogram(audio.sr, hop_length=1024, n_fft=1024, n_mels=112)(audio)
        fm(mel.unsqueeze(0), split_idx=0).squeeze(0).show(ctx=ax, to_db=True)


source

AmplitudeToDBMode

 AmplitudeToDBMode (value, names=None, module=None, qualname=None,
                    type=None, start=1)

An enumeration.


source

AmplitudeToDB

 AmplitudeToDB (top_db:float|None=None,
                mode:AmplitudeToDBMode=<AmplitudeToDBMode.Power: 'power'>)

Turn a TensorSpec or TensorMelSpec from the power/amplitude scale to the decibel scale

Type Default Details
top_db float | None None Minimum negative cut-off in decibels. A reasonable number is 80.
mode AmplitudeToDBMode AmplitudeToDBMode.Power Power is elementwise square of magnitude

This output depends on the maximum value in the input tensor, and so may return different values for an audio clip split into snippets vs. a a full clip. See torchaudio docs for details.

with less_random():
    _,axs = plt.subplots(1,2,figsize=(12,4))
    adb = AmplitudeToDB(top_db=80)
    for i, ax in enumerate(axs):
        if i==1:
            mel = MelSpectrogram(audio.sr, hop_length=1024, n_fft=1024, n_mels=112)(audio)
            adb(mel.unsqueeze(0), split_idx=0).squeeze(0).show(ctx=ax)
        else:
           mel = MelSpectrogram(audio.sr, hop_length=1024, n_fft=1024, n_mels=112)(audio)
           mel.show(ctx=ax)


source

AudioNormalize

 AudioNormalize (mean=None, std=None, n_spec=1, axes=(0, 2, 3))

Normalize/denorm batch of TensorSpec or TensorMelSpec.